
Code explanation

import library whatever u need

Setup frequency scaling pins (S0, S1)

s0 = digitalio.DigitalInOut(board.A1)

s1 = digitalio.DigitalInOut(board.A2)

s0.direction = digitalio.Direction.OUTPUT

s1.direction = digitalio.Direction.OUTPUT

 These are like “volume knobs.” S0 and S1 set how strong the sensor signal is (here we will

choose 20%).

Setup color filter pins (S2, S3)

s2 = digitalio.DigitalInOut(board.A3)

s3 = digitalio.DigitalInOut(board.A4)

s2.direction = digitalio.Direction.OUTPUT

s3.direction = digitalio.Direction.OUTPUT

 These two pins are like glasses . They decide which color filter (Red, Green, Blue, or

Clear) the sensor looks through.

Setup sensor output pin (OUT → A6)

sensor_out = pulseio.PulseIn(board.A6, maxlen=50, idle_state=False)

 The OUT pin from the sensor is connected to A6.

 PulseIn counts how fast the light pulses are coming (that tells us the color strength).

Set frequency scaling to 20% (S0=H, S1=L)

s0.value = True

s1.value = False

 We set the sensor to send fewer signals (20%). This keeps the data small and easy to read.

def read_color(s2_state, s3_state):

 s2.value = s2_state

 s3.value = s3_state

 time.sleep(0.1) # let filter settle

 Choose which color filter to use (Red, Green, Blue, or Clear).

 Wait a moment so the sensor can adjust.

 sensor_out.clear()

 sensor_out.resume()

 time.sleep(0.05) # collect pulses

 sensor_out.pause()

 Start counting pulses from the sensor for a short time.

 Then stop and keep the data.

 n = len(sensor_out)

 if n == 0:

 return 0

 If no pulses came, return 0 (no color detected).

 # Directly sum the values inside PulseIn

 total = 0

 for i in range(n):

 total += sensor_out[i]

 avg_pulse = total / n

 freq = 1_000_000 / avg_pulse # Hz

 return int(freq)

 Add all the pulse times together, find the average.

 Convert this into frequency (how fast the pulses are).

 Higher frequency = stronger color.

def classify_color(r, g, b, c):

 total = r + g + b

 if total == 0:

 return "None"

 Add Red, Green, Blue values. If all are 0, no color is seen.

 rn, gn, bn = r / total, g / total, b / total

 Normalize: we turn the values into percentages of total.

 Example: if R=500, G=250, B=250 → R=0.5, G=0.25, B=0.25.

 # Debug print

 print("Norm → R:", round(rn, 2), "G:", round(gn, 2), "B:", round(bn, 2))

 if rn > 0.40 and rn > gn + 0.10 and rn > bn + 0.10:

 return "Red"

 elif gn > 0.35 and gn > rn + 0.05 and gn > bn + 0.05:

 return "Green"

 elif bn > 0.35 and bn > rn + 0.05 and bn > gn + 0.05:

 return "Blue"

 elif abs(rn - gn) < 0.05 and abs(rn - bn) < 0.05:

 return "White"

 else:

 return "Unknown"

 These rules decide the color name:

 - If Red is much bigger → "Red"

 - If Green is much bigger → "Green"

 - If Blue is much bigger → "Blue"

 - If all nearly equal → "White"

 - Otherwise → "Unknown"

while True:

 red = read_color(False, False) # Red

 blue = read_color(False, True) # Blue

 green = read_color(True, True) # Green

 clear = read_color(True, False) # Clear

 Take readings with different filter settings:

 - (False, False) → Red filter

 - (False, True) → Blue filter

 - (True, True) → Green filter

 - (True, False) → Clear (no filter)

 color = classify_color(red, green, blue, clear)

 Use our rules to decide which color it is.

 print("R:", red, "G:", green, "B:", blue, "C:", clear, "→", color)

 Show the numbers and the final color name.

 time.sleep(0.5)

 Wait half a second before reading again.

