Code explanation

import library whatever u need

Setup frequency scaling pins (S0, S1)

sO = digitalio.DigitalInOut(board.A1)

s1 = digitalio.DigitalinOut(board.A2)
sO.direction = digitalio.Direction.OUTPUT
sl.direction = digitalio.Direction.OUTPUT

These are like “volume knobs.” SO and S1 set how strong the sensor signal is (here we will
choose 20%).

Setup color filter pins (S2, S3)

s2 = digitalio.DigitallnOut(board.A3)

s3 = digitalio.DigitalinOut(board.A4)
s2.direction = digitalio.Direction.OUTPUT
s3.direction = digitalio.Direction.OUTPUT

These two pins are like glasses ®®. They decide which color filter (Red, Green, Blue, or
Clear) the sensor looks through.

Setup sensor output pin (OUT = A6)

sensor_out = pulseio.Pulseln(board.A6, maxlen=50, idle_state=False)
The OUT pin from the sensor is connected to A6.

Pulseln counts how fast the light pulses are coming (that tells us the color strength).

Set frequency scaling to 20% (SO=H, S1=L)

sO.value = True

sl.value = False

~ We set the sensor to send fewer signals (20%). This keeps the data small and easy to read.

def read_color(s2_state, s3_state):
s2.value =s2_state
s3.value = s3_state
time.sleep(0.1) # let filter settle
= Choose which color filter to use (Red, Green, Blue, or Clear).

=~ Wait a moment so the sensor can adjust.

sensor_out.clear()
sensor_out.resume()
time.sleep(0.05) # collect pulses
sensor_out.pause()

= Start counting pulses from the sensor for a short time.

~ Then stop and keep the data.

n = len(sensor_out)
if n==0:
return 0

= If no pulses came, return 0 (no color detected).

Directly sum the values inside Pulseln
total =0

foriin range(n):

total += sensor_out[i]

avg_pulse = total / n
freq =1_000_000 / avg_pulse # Hz
return int(freq)
~ Add all the pulse times together, find the average.
= Convert this into frequency (how fast the pulses are).
= Higher frequency = stronger color.
def classify_color(r, g, b, c):
total=r+g+b
if total == 0:
return "None"

= Add Red, Green, Blue values. If all are 0, no color is seen.

rn, gn, bn =r/ total, g / total, b / total
~ Normalize: we turn the values into percentages of total.

- Example: if R=500, G=250, B=250 - R=0.5, G=0.25, B=0.25.

Debug print

print("Norm = R:", round(rn, 2), "G:", round(gn, 2), "B:", round(bn, 2))

ifrn>0.40 and rn >gn +0.10 and rn > bn + 0.10:
return "Red"
elif gn > 0.35 and gn > rn + 0.05 and gn > bn + 0.05:

return "Green"

elif bn >0.35 and bn >rn + 0.05 and bn > gn + 0.05:
return "Blue"

elif abs(rn - gn) < 0.05 and abs(rn - bn) < 0.05:
return "White"

else:
return "Unknown"

~ These rules decide the color name:

- If Red is much bigger - "Red"

- If Green is much bigger - "Green"

- If Blue is much bigger = "Blue"

- If all nearly equal - "White"

- Otherwise = "Unknown"

while True:
red =read_color(False, False) # Red
blue =read_color(False, True) # Blue
green =read_color(True, True) # Green
clear =read_color(True, False) # Clear
-~ Take readings with different filter settings:
- (False, False) = Red filter
- (False, True) - Blue filter
- (True, True) - Green filter

- (True, False) - Clear (no filter)

color = classify_color(red, green, blue, clear)

= Use our rules to decide which color it is.

print("R:", red, "G:", green, "B:", blue, "C:", clear, ">", color)

= Show the numbers and the final color name.

time.sleep(0.5)

=~ Wait half a second before reading again.

